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I.  INTRODUCTION 

This report summarizes the results from the third set of wind 
tunnel tests to evaluate how effectively pyrotechnics reduce projectile 
base drag. Previous experiments^^ concentrated on pyrotechnic formu- 
lations similar to those used in tracer rounds, since such formulations 
were expected to ignite and burn at subatmospheric pressure.  The main 
objective of the present tests was to examine a variety of fuels and 
oxidizers as potential fumer mixes.  In addition, some earlier experi- 
ments were repeated with a 64mm diameter model in place of the standard 
25mm diameter model.  Tests were also made with a force balance to 
compare specific impulses computed from pressure measurements with 
specific impulses measured directly with the force balance. 

II.  EXPERIMENTAL 

Test Facility 

The experiments were conducted in a wind tunnel at Mach 2 at dupli- 
cated sea-level pressure and temperature conditions. The facility used 
was the Naval Surface Weapons Center's Hypersonic Tunnel which has a 
large capacity air supply and heating system. Normally, this tunnel is 
operated at Mach numbers 5 to 10. Recently it has been equipped with 
two additional stilling chambers which permit its operation at super- 
sonic Mach numbers at duplicated sea-level temperature and pressure con- 
ditions. The flow nozzles used in this study were of centerbody-type 
design, 15 or 30cm exit diameter and were procured specifically for pro- 
jectile base flow studies. The overall tunnel system and the new stil- 
ling chamber were depicted previously.^»^ The test setup is illustrated 
on Figure 1. Wind tunnel conditions for each test run are given in 
Table I. 

Model and Instrumentation 

:€ 

Projectile base flow was simulated using a bluff cylindrical model 
which was supported in the stilling chamber and extended through the noz- 
zle throat into the test section (Figure 2). Two sizes, 25 and 64inm dia- 
meter models were used. Model lengths, measured from the nozzle throat, 
were 26.7cm and 46cm for the 25mm and 64mm diameter models, respectively. 

Both models were equipped with air turbines capable of spin rates 
of up to 50 krpm and with force balances for direct base drag measure- 
ments (Figure 3).  Pressure orifices were provided near the model peri- 
phery for base drag determination during tests with spin. 

1 J. R.  yard, F,  P.   Baltakis,  S.  W.  Pronohiak,   "Wind Tunnel Study of Base 
Drag Reduotion by Combustion of Pyroteahnioe," BRL Report No.  1745, 
October 1974,   (AD #B000431L). 

J.  R.  Ward, F,  P.  Baltdkis,  D, Manaimlli, and T.  Elmendorf,   "Wind 
Tunnel Experimente on the Effeat of Comhuetion in the Wake Region of 
Supersonia Projeatiles," BRL Memorandum Report No,  2588, February 1976, 
(AD mn09982L). 
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TABLE I.  Summary of Test Conditions 

Fumer Composition, 
Run M 

CO 

1.97 

Po> bar 

6.4 483 

Percent by Weight Remarks 

18 R20C 64nun diameter model 

19 1.97 6.5 489 R20C 64min diameter model 

49 1.97 6.6 486 R20C 64mm diameter model 
spinning at 18 krpm 

51 1.97 6.9 489 R20C Force balance test 

52 1.97 6.8 492 R20C Force balance test 

53 1.97 6.9 492 R20C Force balance test 

54 1.99 6.8 492 NaBH4/Sr(N0 ) , 
40/60 

56 1.99 6.8 472 NaBH4/Sr(N0-)-, 
15/85     3 

57 1.99 7.0 484 NaBH4/Sr(N0 ) , 
25/75 

58 1.99 7.1 489 NaBH4/Sr(N0-),, 
35/65     5 * 

59 1.99 6.7 489 ZrH /Sr(N0.).. 
70/30    3 Z 

No ignition 

60 1.99 7.0 492 Zr/H2/Sr(N0 ) , 
50/50 

No ignition 

61 1.99 6.8 489 MgH2/Sr(N0,)_, 
24/76    3 i 

No ignition 

62 1.99 7.0 494 Mg/Sr02/oxamide, 
14/81/5 

No ignition 

63 1.99 6.9 492 F-4/azocel, 
90/10 

Delayed ignition 

64 1.99 6.7 494 F-4/azocel, 
90/10 

Delayed ignition 

65 1.99 6.9 494 F-4 Delayed ignition 

66 1.99 7.0 494 F.-Ba 

67 1.99 7.0 494 E-Ba 

68 1.99 6.9 494 NaBH4/Sr(N0.)-, 
25/75     3 * 

69 1.99 6.9 494 NaBH4/Sr(N0,),, 
35/65 

14 



Table I (Continued) 

Fumer Composition, 
Run M 

00 

1.99 

P0. bar 

6.9 

To. K 

494 

Percent by Weight Remarks 

70 B/BaCrO , 
15/85 

No ignition 

71 1.99 6.9 494 B/KC10 , 
31/69 4 

72 1.99 6.9 494 Mg/Sr02/C.R.b, 
15/83/2 

No ignition 

73 1.99 6.9 494 Zr/Sr(NO ) /C.R. 
47/43/10^ 

• 

74 1.99 6.9 494 Zr/KCIO 
57/43 4 

75 1.99 6.9 494 Zr/KCKVC.R., 
51/39/10 

No ignition 

76 1.99 6.9 494 Ti/KC10 
33/67 

No ignition 

77 1.99 6.9 494 Mg/KC104/C.R., 
37/53/10 

78 1.99 6.9 494 Zr/Sr(N0_)9, 
52/48  3 

79 1.99 6.9 494 Repeat Run 78 Delayed igni 

80 1.99 6.9 494 Ti/Sr(N0.)2> 
36/64  ' ^ 

No ignition 

81 1.99 6.9 494 Tl/SrCNOsWCR, 
32/58/10 * 

82 1.99 6.9 494 F-4/RDX, 
96/4 

Delayed igni 

83 1.99 6.9 494 NaBH4/Sr(N0.),, 
40/60      l 

84 1.99 6.9 49^ ZrH2/Sr(NO.),, 
50/50    3 

No ignition 

85 1.99 6.9 494 F-4/HESC, 
90/10 

86 1.99 6.9 494 Ti/KC104/CR, 
30/60/10 

87 1.99 6.9 494 F-4,149-250y Mg 

88 1.99 6.9 494 F-4/TNT, 
96/4 

89 1.99 6.9 494 Ti/SrCNO,),, 
36/64  ' i 

15 
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Table I (Continued) 
Fumer Composition, 

Run M 
oo 

1.99 

Po, bar 

6.9 

To' K 

494 

Percent by Weight 

Ti.KCIO,, 
33,67 

Remarks 

90 No ignition 

91 1.99 6.9 494 F-4,74-100u Mg 

92 1.99 6.9 494 F-4,44-100y Mg 

93 1.99 6.9 494 F-4,<44u Mg 

94 1.99 6.9 494 B/KC10., 
31/69 

95 1.99 6.9 494 Mg/Sr02/CR, 
15,83,2 

No ignition 

Propietary mix from the Ensign-Bickford Co. Approximate composition 
in percent by weight 

Mg(25± 5), Sr(N03)2 (3S± 5), PVC (10), DOP (10), AP(20) where 

PVC is Polyvinylchloride, 
DOP is dioctylpthalate, 
AP is ammonium perchlorate. 

Calcium resinate. 

Propellant supplied by Hercules Co. No analysis given. 

The propellant for each run was contained in a separate steel cap- 
sule and was ignited with a laser light beam. A 250-watt CO2 gas laser 
was used and arranged as shown on Figure 1. The light beam diameter at 
the plane of impingement was about one cm and the exposure time ranged 
from two to five seconds. 

Fumer Mixes 

2 
The fumer mixes were charged at a pressure of 282 MN/m (40,900 psi) 

at the Frankford Arsenal's Pyrotechnics Laboratory. The pressure was 
calibrated with a Webster force gage. A layer of R20C mix was pressed 
onto each fumer mix to assist in the ignition of the mix. With the ex- 
ception of experiments with fumer mixes R20C and F-4, the fumer mix 
consisted of a fuel and oxidizer or a fuel, oxidizer, and one burning 
rate modifier. The chemical composition of R20C and F-4 is included 
in Table II. 

The mass and the column height of each fumer mix and igniter 
mix were also measured in order to calculate mass burning rates. 
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Table II.  Composition of Standard Fumer Mixes 
Examined in Wind Tunnel Experiments 

Designation 

R20C 

F-l 

F-4 

R284 

Constituents, percent by weight 

Mg, grade 12 , 21.5 
SrO 
PbO^ 
BaO^ 
C.R?b 

65.7 
3.4 
3.4 
6.0 

Mg, grade 11 8.1 
STO 

C.R.b 

78.8 
4.0 
9.1 

Mg, grade 11 33.2 
Sr(N0-)2, 
C.R.bä Z 

57.7 
9.1 

Mg, grade 11 28.0 
Sr(NO ) 
C.R.b3 i 

55.0 
17.0 

Magnesium specification as given in Mil Spec JAN-M-382A. 

Calcium resinate. 

III. RESULTS 

Base Pressure Data 

The performance parameters of primary interest in this work are 
base pressure increase and the fumer specific impulse. The base pres- 
sure increase was recorded directly versus time. The specific impulse 
was obtained by integrating the base pressure increase with respect to 
time and then multiplying by the ratio of A/mf. 

The base pressure increase was found to vary considerably with 
time. Mixes which ignited quickly generally yielded a step-type pres- 
sure pulse. Those mixes which ignited more slowly yielded gradual 
pressure increases. 

Pressure-time histories for test runs which ignited are shown in 
the Appendix. The time is shown in seconds and the base pressure is 
normalized to the free-stream static pressure. For a number of runs 
only qualitative variation is shown. During these runs, due to mal- 
functioning of the data recording system, pressure data were recorded 

18 
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using an auxiliary printing system and quantitative computer plotting 
was not available. 

It may be noted en many runs that the main pressure rise is pre- 
ceded by a sharp spike ccrrssponding to the combustion of the igniter 
mix (R20C). In some runs the base pressure at the end of burning is 
higher than the pre-combustion value. Presumably this is from forma- 
tion of slag on the face of the wind tunnel model that obstructed the 
pressure taps. 

The reduction of the base drag coefficient during combustion is 

AC Db AP. 

JDb 
(1) 

b. 
i 

For those tests in which the fumer mix ignited rapidly and burned evenly 
to yield step-like pressure-time histories, AP^ was constant over the 
run and the mass burning rate of the fumer mix could be inferred. For 
the tests which did not yield step-like pressure-time histories, the 
following expression was devised to estimate an average AP, b' 

AP, (tbr^up.v (p,).] dt (2) 

where ?_... is the base pressure at time t, öt ' 

tb ■ time during which the base pressure is at least 25% greater 
than (Pb).. 

For the majority of tests, the specific impulse was based on pressure 
data taken at orifice P3 (Figure 2). For some tests data from other 
pressure orifices were used. In most cases the agreement between the 
specific impulse values computed from data at different pressure taps 
was well within ±10 percent. 

The injection parameter was computed from 

i I = p U A 
00 CO 

(3) 

Force Balance Measurements 

Direct measurements of the reduction in drag force by combustion 
were attempted with both the 25mm and 64nun diameter models. The force 
balance was designed originally for use with the 25mm diameter model. 
In the 64mm diameter model, the force balance was overloaded (Runs 11-17) 

The force measurements were made with R20C, since this mix ignited 
easily and yielded step-like base pressure-time histories. All results 
pertinent to subsequent discussion are presented in Table III. 

19 
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IV.  DISCUSSION 

2 
In the previous wind tunnel tests, it was shown that the base pres- 

sure increase due to combustion of the pyrotechnic could be correlated 
to the injection parameter. One objective of the present test series 
was to see if alternate fuels and oxidizers obeyed the same trend, or 
perhaps some combination would be superior to the base drag reductions 
observed to date. To properly compare the present tests with those in 
reference 2, one must separate the effect of the igniter mix on base 
pressure from the effect of the fumer mix. This can be done only if 
quantitative computer plots of base pressure vs time are available. 
Furthermore, it is necessary that the fumer mix have a constant mass 
burning rate in order to compute the injection parameter. Table IV 
lists the runs that satisfy these two criteria. 

Table IV. Base Pressure for Tests in Which Combustion of the 
Fumer Could be Distinguished From the Igniter 

Run 
mf, g 

11.1 

tb,s 

3.8 

ihf.  g/s 

2.9 

I x 103 

0.97 

fPb/PJi 

0.68a 

A(P   /PJ % Cp,. reduced 
üb 

18 0.067 21 

19 11.1 3.6 3.1 1.0 0.68a 0.085 27 

49 11.1 1.1 10.0 3.4 0.67a'b 0.16 48 

56 9.4 1.4 6.7 18.0 0.62 0.26 68 

57 8.7 1.8 4.8 13.0 0.62 0.23 60 

66 7.8 9.4 0.83 2.2 0.62 0.16 42 

67 8.1 9.3 0.87 2.4 0.62 0.17 45 

64mm diameter model. 

Spin rate 18 krpm. 

Runs 18, 19, and 49 were made with the 64mm diameter model. The 
object of these tests was to obtain base pressure measurements for R20C 
at lower values of I than could be obtained with the standard 25mm 
diameter model used in all the previous tests. Previous wind tunnel 
experiments with cold gases3»'* and with pyrotechnics2 demonstrated 

J. Reid and R,  C. Haating8t   "The Effaot of a Central Jet on the Base 
Preeeure of a Cylindriaal Afterbody in a Superaonio Stream," RAE 
Report No. Aero.  2621,  1959. 

L. D. Kayser,  "Effeats of Base Bleed and Supersonic Nozzle Injection 
on Base Pressure," BRL Memorandum Report No. 2456, March 1975, 
(AD #B003442L). 

22 

i 



that the base pressure increase for a given value of I is independent 
of df/d for I less than 0.005. Such results for gases injected into 
the wake are illustrated in Figure 4. As indicated in Table IV, the 
64mm diameter model provides data for I values of 0.001 and 0.0034, 
within the region of I where the base pressure rise is independent of 
df/d. 

In Figure 5 the base pressure increase is plotted as a function of 
I for all runs in the three wind tunnel test series with R20C. From 
Figure 5, it is evident that a maximum base pressure increase has been 
reached with values of I greater than 0.02, and that a sizeable increase 
in base pressure results for injection values below 0.005. The general 
trend of base pressure v£ I exhibited in Figure 5 is similar to the 
trend for the injection of gases as in Figure 4. 

Runs 56 and 57 were made with NaBIfy as the fuel. Previous experi- 
ments5»6 suggested that the injected gas should have as low a molecular 
weight as possible. To test this hypothesis with pyrotechnics, fumer 
mixes with MgH2, ZrH2, or NaBlfy were made up with Sr (1^03)2 as the 
oxidizer. Only the fumer mixes with NaBH. ignited and burned in the wind 
tunnel, although all the hydrides burned under laboratory conditions. 
Two of the NaBH4 "»ixes yielded rapidly igniting, step-like pressure 
histories from which burning rates could be inferred. These two runs 
are summarized below and the base pressure increases vs_ I plotted in 
Figure 6 with the previous data for R20C. 

Fumer Mix, percent by weight   f *f. g/s I MPb/PJ r, cm/s 

15/85 NaBH4/Sr(N03)2 

25/75 NaBH4/Sr(N03)2 

6.7  0.018  0.26 

4.8  0.013  0.23 

1.3 

1.0 

The faster burning 15/85 NaBH4/Sr(N03)2 provides the largest base 
pressure rise observed in these wind tunnel tests. The base pressure 
rise for spinning R20C is 0.24 vs 0.26 for the NaBIfy mix.  It appears 
nonetheless, that the values for NaBfy fit into the trend of base 
pressure rise v£ I exhibited by the R20C runs (Figure 6). The trend of 
a maximum base pressure rise for a given value of I followed by de- 
creasing base pressure rise as I increases is also observed for gases 
injected into the wake (e.g.. Figure 4). 

J. E. Bowman and W. A, Claydan,  "Reduotion of Base Drag by Gas 
Ejeotion," RARDE Report 4/691 Deomhar 1969. 

S. N. B. Murthy and J. R. Osbom, "Baae Flow Data With and Without 
Injection: Bibliography and Semi-Rational Correlations," BRL Con- 
tract Report No.   113, August 1972,   (AD §9141881). 
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REID AND HASTINGS 
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Figure 4.    Summary of Reid and Hastings' Results with Various 
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The only other fumer mix for which quantitative computer output 
was available was a propietary mix containing ammonium perchlorate 
(AP) and strontium nitrate as the oxidizers. The A(P5/P ) for this mix 
is plotted in Figure 7 along with the base pressure increases for the 
mixes in Figure 6. 

The marked increase in base pressure exhibited by fumer mixes with 
I values near 0.001-0.002 is reflected in the specific impulses for the 
fumer mixes in Table IV. The specific impulses are listed in Table III; 
the specific impulses listed for the NaBH4-mixes and the AP-mix include 
the igniter. To estimate the specific impulse for the fumer mix itself, 
the specific impulse values in Table III are corrected as follows : 

tb. 
Ispf = Isp (f+ig) tb,. . , 

••'  (f+ig) 
m- (4) 

A summary of the specific impulses for the fumer mixes in Table IV is 
presented in Table V and the specific impulses as a function of I are 
plotted in Figure 8. The maximum specific impulse occurs at relatively 
low values of I (approximately 0.002). In a situation where the 
quantity of fumer that can be  added to a projectile is limited, the 
appropriate fumer mix should be one with an injection parameter near 
0.002. 

The next step in the analysis of the correlation between base 
pressure increase and the injection parameter is to see if a function 
can be found relating the base drag reduction to I. Bowman and 
Clayden^ proposed the following expression for that purpose 

JDb = C 
-Jxl 

Db. 
i 

(5) 

The constant J varies with Mach number, and the temperature and mole- 
cular weight of the injected gas. 

Bowman and Clayden stated that they were interested in a simple, 
empirical expression for use in systems analysis and their expression 
should be regarded as "tentative." From the results for pyrotechnic 
combustion. Bowman and Clayden's simple expression appears inadequate. 
Equation (5) implies that the base drag disappears at large values of 
I; this is not true for the pyrotechnics nor for ejection of various 
gases (e.g., Figure 4). Equation (5) should be more properly expressed as 

^Db 'Db_ 
(C 

mm Db. 'Db ) e 
-Jxl 

(6) 
mm 

where C Db is the minimum base drag coefficient that may be achieved, 
mm 
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TABLE V. Specific Impulses of Fumer Mixes in Table IV 

Fumer Mix Isp, kN-s/kg I x 10J Reference 

R20C 6.8 1.0 a 

R20C 7.1 1.0 a 

R20C 4.4 3.4 b 

R20C 3.0 6.7 b 

R20C 3.4 7.5 b 

R20C 3.2 8.0 c 

R20C 2.2 8.2 b 

R20C 2.6 8.7 b 

R20C 1.2 23.0 b 

R20C 1.4 23.0 b 

R20C 0.95 24.0 b 

R20C 0.94 26.0 b 

R20C 1.1 27.0 b 

R20C 1.3 27.0 b 

R20C 1.1 28.0 b 

AP-mix 7.8d 2.2 a 

AP-mix 7.2d 2.4 a 

NaBH./Sr(NO )- 
(15/85)  3 

1.2d 18.0 a 

NaBH/i/Sr(NO,), 
(25/75)  3 i 

1.8d 13.0 a 

This work.   F. P. Baltakis, "Wind Tunnel Study of Projectile 
Base Drag Reduction Through Combustion of Solid, Fuel-Rich Propellants," 
NOL Wind Tunnel Report No. 93, October 1974.   Reference 1. 

Corrected value using Eq. (4). 
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To test the applicability of equations (5) and (6) to the data 
generated in the wind tunnel tests, equations (5) and (6) were expressed 
in terms of A(P./P^) through 

'Db 
2 (P., - Pb) 

P U 
00 00 

(7) 

Equations (5) and (6) become 

A(^) [1 - 0.] [1 - e-JxIl . and (8) 

P     P 
. , b,   .,- b .,   ,,   -Jxl, 

00 00 

(9) 

where A(—)   refers to the maximum base pressure that may be achieved, 
« max 

A non-linear least-squares program was used to fit equations (8) 
and (9) to the data in Figure 7.  In equation (8), the initial value of 
Pb/Poo was 0.62. The best-fit value of J was computed for equation (8); 
for equation (9) best-fit values of J and MP^/PooDmax were comPute(^ 
The results of the calculations are presented below and the curves 
generated using the best-fit values are drawn through the experimental 
data in Figure 9. 

Equation 

(8) 

(9) 

MPb/PJ max 

66 

3.9 x 10 0.23 

Equation (8) underestimates the A(P./P^) at low values of I and over- 
estimates the base pressure increase at larger values of I. Equation (9) 
fits the experimental data much better, although the best-fit A(P./P^ 
is less than the 0.26 recorded for the (15/85) NaBH4/Sr(N03)2 mix. 

An alternate expression that also fits the experimental data as 
well as equation (9) is the following 

max 

&cvpJ - iSr (10) 

R. H. Moore and R. K.  Ziegler,   "The Solution of the General Least 
Squares Problem With Special Reference to High-Speed ComputerBt " 
LOB Alamos Scientific Laboratory Report LA-2S6?, March 1960. 
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where Q and N are the floating parameters.  In Figure 10 the curve 
generated from best-fit values of Q and N is drawn through the experi- 
mental points. For the data taken from Figure 7, best-fit values of Q 
and N are 1.4 x 10^ and 5.2 x 102, respectively. 

The remaining test runs in Table IV that merit discussion are those 
test runs made with the force balance. The object of these runs was to 
compare the specific impulses computed from the base pressure measure- 
ments with the specific impulses determined experimentally. Table VI 
compares specific impulses measured with R20C as the fumer mix with 
specific impulses computed from the base pressure measurements. The 
measured and computed specific impulses are in reasonable agreement. 
Thus, it appears the pressure distribution over the rear face of the 
wind tunnel model is uniform. Kayser^ measured the pressure distri- 
bution over the face of his model while gas was being injected into 
the wake region and he found that the pressure increase was uniform. 

The remaining tests can be treated only qualitatively either 
because the combustion of the fumer was irregular or because quanti- 
tative computer output was not available.  In order to summarize these 
tests in a systematic manner, Table VII was constructed. For each 
combination of fuel and oxidizer, the following information is provided: 

a. Run number. 

b. Percent by weight of fuel. 

c. Comment on the burning properties: 

N - no combustion. 

B - unsteady burning. 

Q - smooth combustion, no quantitative output. 

IV - smooth combustion, quantitative output, listed in 
Table IV. 

For the tests in Table VII listed as smooth burning but with no quan- 
titative output, the percent base drag reduction and injection parameter 
are listed in Table VIII. The longer the fumer mix burned, the less 
important is the failure to account for the igniter. For example, the 
injection parameter for Run 66 (AP-mix) changes only slightly when the 
correction is made for the igniter as shown below: 
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TABLE VI. Comparison Between Specific Impulses Measured 
by the Force Balance with those Inferred from Pressure Orifices 

Run A,  g/s I Isp, kN-s Ai Reference 

51(F)b 3.1 8.8 3.2 d 

52(F) 3.3 9.7 3.1 d 

53(F) 3.3 8.8 2.5 d 

1(P)C 4.0 8.0 3.2 e 

117(P) 3.6 8.0 3.2 f 

119(P) 3.1 6.7 3.0 f 

121(P) 3.7 8.2 2.2 f 

112(P) 3.4 7.5 3.4 f 

124(P) 4.0 8.7 2.6 f 

Fumer mix is R20C, M = 1.98 or 1.99 

Specific impulse determined from force balance measurements. 

Specific impulse determined from pressure measurements. 

This work. 

Reference 1. 

F. P. Baltakis, "Wind Tunnel Study of Projectile Base Drag Reduction 
Through Combustion of Solid, Fuel-Rich Propellants," NOL Wind Tunnel 
Report No. 93, October 1974. 
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#4 
TABLE VII. Summary of Results for Various 

Fuel/Oxidizer Combinations Tested 

Oxidirer BaCrO, KC10, KC104/C.R. Sr(N03)2 Sr{N03)2/C.R, 

Fuel 
B 70/15/N 71/31/B 

94/31/B 

NaBH. 

Mg 

Ti 

IT 

MgH2 

ZrH, 

56/15/IV 
57/25/IV 
68/25/Q 
58/35/B 
69/35/B 
54/40/B 
83/40/Q 

77/37/Q 
79/37/Q 

76/33/N 
90/33/N 

86/30/B 80/36/N 
89/36/B 

81/32/Q 

74/57/Q 75/51/N 78/52/B 

61/24/N 

59/70/N 
60/50/N 
84/50/N 

73/47/Q 

The three terms represent: run number/percent by weight of fuel/ 
burning characteristic of the mix, IV - smooth burning, quantitative 
computer output available, Q-smooth burning, no quantitative computer 
output available; B-uneven combustion or poor ignition, N-failed to 
ignite. 

Ternary mix containing 10% by weight calcium resinate. 
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Table VIII. Injection Parameters and Base Drag Reductions 
for Smooth-Burning Mixes with No Quantitative Computer Output 

Run Composition I 
%ACDb reduced 

68 NaBH4/Sr(N03)2(25/75) 0.011 45 

83 NaBH4/Sr(N03)2(40/75) 0.005 51 

77 Mg/KC104/C.R.
b(37/53/10) 0.002 31 

79 Mg/KC104/C.R.(37/53/10) 0.003 46 

81 Ti/Sr(N03)2/C.R.(32/58/10) 0.012 57 

74 Zr/KC104(57/43) 0.019 59 

73 Zr/Sr(N03)2/C.R.(47/43/10) 0.003 32 

Run 66       tb, sec m. g I 

igniter ♦      11.2 
fumer 

8.6 0.002 

fumer 9.4 7.8 0.0022 

For the faster burning mixes, the correction is more substantial as 
shown for a NaBH4/Sr(NO_)2 mix. 

Run 56 

igniter + 
fumer 

tb, sec 

2.4 

m, g 

10.2 

I 

0.011 

fumer 1.4 9.4 0.018 

On this basis the results in Table VIII generally follow the trend 
that the faster-burning mixes yield higher base-drag reductions than 
the slower burning mixes. 
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V.  CONCLUSIONS 

1. Base pressure increase from pyrotechnic combustion can be corre- 
lated by the injection parameter. 

2. Maximum base pressure increase at M - 2.0 occurs near an I value 
of 0.002. The maximum base pressure increase corresponds to a 68% re- 
duction in the base-drag coefficient. 

3. Specific impulses of nearly 8 kN-s/kg have been observed with 
fumer mixes with injection parameters near 0.002. 

4. Specific impulses measured with a force balance are in reasonable 
agreement with the specific impulse computed by integration of base 
pressure vs time curves. This implies the pressure distribution is 
uniform over the base of the wind tunnel model. 

5. The use of NaBH4 as a fuel yielded a fumer mix that burned rapidly 
and smoothly, but did not provide a fumer fuel much different than a 
magnesium-based fumer mix with the same burning rate. 
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APPENDIX A 

Summary of the Pressure-Time Histories for the Runs Which Ignited 
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